Lecture 4.
The Java Collections Framework

EECS 2011
UYQBSI,@ ' Prof. J. Elder -1- Last Updated: Oct 6 2015

IIIIIIIIII

Outline

* |ntroduction to the Java Collections Framework

* |terators

* |nterfaces, Abstract Classes and Classes of the Java
Collections Framework

EECS 2011
YORK ' -2- Last Updated: Oct 6 2015
“““““““““ ¢ Prof. J. Elder

IIIIIIIIII

Learning Outcomes

* From this lecture you should understand:
— The purpose and advantages of the Java Collections Framework

— How interfaces, abstract classes and classes are used
hierarchically to achieve some of the key goals of object-oriented
software engineering.

— The purpose of iterators, and how to create and use them.

— How the Java Collections Framework can be used to develop
code using general collections, lists, array lists, stacks and
queues.

EECS 2011
YORKRE} _3- Last Updated: Oct 6 2015
““““““““““ Prof. J. Elder

IIIIIIIIII

Outline

* |Introduction to the Java Collections Framework

* |terators

* |nterfaces, Abstract Classes and Classes of the Java
Collections Framework

YORK ' EECS 2011

......... : Prof. J. Elder -4 - Last Updated: Oct 6 2015

IIIIIIIIII

The Java Collections Framework

« We will consider the Java Collections Framework as a
good example of how to apply the principles of object-
oriented software engineering (see Lecture 1) to the
design of classical data structures.

YORK ' EECS 2011

uuuuuuuuuu Prof. J. Elder -5- Last Updated: Oct 6 2015

IIIIIIIIII

The Java Collections Framework

* A coupled set of classes and interfaces that implement
commonly reusable collection data structures.

* Designed and developed primarily by Joshua Bloch
(former Chief Java Architect at Google).

YORK ' EECS 2011

.......... Prof. J. Elder -6 - Last Updated: Oct 6 2015

IIIIIIIIII

What is a Collection?

* An object that groups multiple elements into a single
unit.

« Sometimes called a container.

EECS 2011
YORK ' -7- Last Updated: Oct 6 2015
“““““““““ Prof. J. Elder

IIIIIIIIII

What is a Collection Framework?

» A unified architecture for representing and manipulating
collections.

* Includes:
— Interfaces: A hierarchy of ADTs.
— Implementations

— Algorithms: The methods that perform useful computations,
such as searching and sorting, on objects that implement
collection interfaces.

» These algorithms are polymorphic: that is, the same method can be
used on many different implementations of the appropriate
collection interface.

EECS 2011
YORKRE} 8- Last Updated: Oct 6 2015
““““““““ g Prof. J. Elder

IIIIIIIIII

History

« Apart from the Java Collections Framework, well-known
examples of collections frameworks include the C++

Standard Template Library (STL) and Smalltalk's
collection hierarchy.

YORK ' EECS 2011

uuuuuuuuuu Prof. J. Elder -9- Last Updated: Oct 6 2015

IIIIIIIIII

Benefits

 Reduces programming effort: By providing useful data structures
and algorithms, the Collections Framework frees you to concentrate
on the important parts of your program rather than on the low-level
"plumbing” required to make it work.

* Increases program speed and quality: Provides high-
performance, high-quality implementations of useful data structures
and algorithms.

« Allows interoperability among unrelated APIls: APls can
interoperate seamlessly, even though they were written
independently.

* Reduces effort to learn and to use new APlIs
 Reduces effort to design new APIs

 Fosters software reuse: New data structures that conform to the
standard collection interfaces are by nature reusable.

EECS 2011
YORK ' -10 - Last Updated: Oct 6 2015
““““““““““ Prof. J. Elder

IIIIIIIIII

Where is the Java Collections Framework?

« Package java.util.

* In this lecture we will survey the interfaces, abstract classes and
classes for linear data structures provided by the Java Collections
Framework.

« We will not cover all of the details (e.g., the exceptions that may be
thrown).

* For additional details, please see

YORKJ

UUUUUUU £
vvvvvvvvvv

Javadoc, provided with your java distribution.

Comments and code in the specific java.util.*.java files, provided
with your java distribution.

The Collections Java tutorial, available at
http://docs.oracle.com/javase/tutorial/collections/index.html

Chan et al, The Java Class Libraries, Second Edition

EECS 2011

Prof. J. Elder -11- Last Updated: Oct 6 2015

Core Collection Interfaces

Map

\
Se ‘Ust |Quelue |De<I]ue rtedMap
4‘—"¢(A

EECS 2011
XQBSI& ' Prof. J. Elder -12 - Last Updated: Oct 6 2015

IIIIIIIIII

Outline

* |ntroduction to the Java Collections Framework

* |terators

* |nterfaces, Abstract Classes and Classes of the Java
Collections Framework

EECS 2011
YORK ' -13 - Last Updated: Oct 6 2015
““““““““ ¢ Prof. J. Elder

IIIIIIIIII

Traversing Collections in Java

* There are two ways to traverse collections:
— using Iterators.

— with the (enhanced) for-each construct

EECS 2011
UYQBSK ' Prof. J. Elder -14 - Last Updated: Oct 6 2015

IIIIIIIIII

lterators

« An lterator is an object that enables you to traverse through a collection
and to remove elements from the collection selectively, if desired.

* You get an lterator for a collection by calling the collection’s iterator
method.

» Suppose collection is an instance of a Collection. Then to print out
each element on a separate line:

lterator<E> it = collection.iterator();
while (it.hasNext())
System.out.printin(it.next());

» Note that next() does two things:

1. Returns the current element (initially the first element)

2. Steps to the next element and makes it the current element.

YORK ' EECS 2011 m

“““““““““ Prof. J. Elder

IIIIIIIIII

Last Updated: Oct 6 2015

Iterators

lterator interface:
public interface Iterator<kE> {
boolean hasNext();
E next();

void remove(); //optional

hasNext() returns true if the iteration has more elements

next() returns the next element in the iteration.

— throws exception if iterator has already visited all elements.

remove() removes the last element that was returned by next.
— remove may be called only once per call to next
— otherwise throws an exception.
— lIterator.remove is the only safe way to modify a collection during iteration

EECS 2011
YORK ' -16 - Last Updated: Oct 6 2015
““““““““ ¢ Prof. J. Elder

IIIIIIIIII

Implementing Iterators

« Could make a copy of the collection.

— Good: could make copy private — no other objects could change
it from under you.

— Bad: construction is O(n).

« Could use the collection itself (the typical choice).

— Good: construction, hasNext and next are all O(1).

— Bad: if another object makes a structural change to the
collection, the results are unspecified.

EECS 2011
YORKREJ 17 - Last Updated: Oct 6 2015
“““““““““ Prof. J. Elder

IIIIIIIIII

The Enhanced For-Each Statement

« Suppose collection is an instance of a Collection. Then
for (Object o : collection)
System.out.printin(o);
prints each element of the collection on a separate line.

« This code is just shorthand: it compiles to use o.iterator().

EECS 2011
YORK ' -18 - Last Updated: Oct 6 2015
“““““““““ Prof. J. Elder

IIIIIIIIII

The Generality of Iterators

* Note that iterators are general in that they apply to any
collection.

— Could represent a sequence, set or map.

— Could be implemented using arrays or linked lists.

EECS 2011
YORK ' -19 - Last Updated: Oct 6 2015
“““““““““ Prof. J. Elder

IIIIIIIIII

Listlterators

« A Listlterator extends lterator to treat the collection as a list, allowing

— access to the integer position (index) of elements ’It t |
erator

— forward and backward traversal

— modification and insertion of elements. ’ Listlteratorl

« The current position is viewed as being either
— Before the first element
— Between two elements

— After the last element

EECS 2011
YORK ' -20 - Last Updated: Oct 6 2015
““““““““ ¢ Prof. J. Elder

IIIIIIIIII

Listlterators | IterTatorl

- Listlterators support the following methods: ’ Listlteratorl

YORKH

IIIIIIIIII

add(e): inserts element e at current position

hasNext()

hasPrevious()

previous(): returns element before current position and steps backward

next(): returns element after current position and steps forward

nextindex()

previousindex()

set(e): replaces the element returned by the most recent next() or previous() call

remove(): removes the element returned by the most recent next() or previous() call

EECS 2011

Prof. J. Elder -21- Last Updated: Oct 6 2015

Outline

* |ntroduction to the Java Collections Framework

* |terators

* Interfaces, Abstract Classes and Classes of the Java
Collections Framework

EECS 2011
UYQBSIS ' Prof. J. Elder -22 - Last Updated: Oct 6 2015

UUUUUUUUUU

Levels of Abstraction

* Recall that Java supports three levels of abstraction:

» Java expression of an ADT

* Includes method declarations with arguments of specified types, but
with empty bodies

* Implements only a subset of an interface.

« Cannot be used to instantiate an object.

 May extend one or more abstract classes
» Must fully implement any interface it implements

« Can be used to instantiate objects.

EECS 2011
Prof. J. Elder

-23 - Last Updated: Oct 6 2015

The Java Collections Framework (Ordered Data Types)

’ Queue

’ Deque

Interface

Abstract Class

Abstract

Queue

! lterable

]

’ Collection |

Abstract
Collection

‘ :

Abstract
List

List

IIIIIIIII
UUUUUUUUUU

' EECS 2011
Prof. J. Elder

Linked
List

-24 -

Array Priority Abstract
|M| %l Sequential | | Array ’ Vector |
List List A
/‘ | ‘ ’ Stack |
4

Last Updated: Oct 6 2015

The Iterable Interface

« Allows an lterator to be associated with an object.

* The iterator allows an existing data structure to be
stepped through sequentially, using the following
methods:

— hasNext() returns true if the iteration has more elements
— next() returns the next element in the iteration.
 throws exception if iterator has already visited all elements.
— remove() removes the last element that was returned by next.
* remove may be called only once per call to next
» otherwise throws an exception.

* Iterator.remove is the only safe way to modify a collection
during iteration

EECS 2011
YORK ' -25 - Last Updated: Oct 6 2015
””””””””” Prof. J. Elder

IIIIIIIIII

The Java Collections Framework (Ordered Data Types)

’ Queue

’ Deque

Interface

Abstract Class

Abstract

Queue

! lterable

]

’ Collection |

Abstract
Collection

Abstract
List

List

IIIIIIIII
UUUUUUUUUU

' EECS 2011

Prof. J. Elder

Linked
List

- 26 -

Array Priority Abstract
|M| %l Sequential | | Array ’ Vector |
List List A
/‘ | ‘ ’ Stack |
4

Last Updated: Oct 6 2015

The Collection Interface

» Allows data to be modeled as a collection of objects. In addition to

the Iterator interface, provides interfaces for:

— Creating the data structure
* add(e)
« addAli(c)
— Querying the data structure
+ size()
isEmpty()
« contains(e)
« containsAll(c)
* toArray()
+ equals(c)
— Modifying the data structure
remove(e)
removeAll(c)
« retainAll(c)

» clear()

EECS 2011
YORKH I 27-
puavERsiiE Prof. J. Elder

IIIIIIIIII

Last Updated: Oct 6 2015

The Java Collections Framework (Ordered Data Types)

’ Queue

’ Deque

Interface

Abstract Class

Abstract

Queue

! lterable

]

’ Collection |

Abstract
Collection

Abstract
List

List

IIIIIIIII
UUUUUUUUUU

' EECS 2011

Prof. J. Elder

Linked
List

-28 -

Array Priority Abstract
|M| %l Sequential | | Array ’ Vector |
List List A
/‘ | ‘ ’ Stack |
4

Last Updated: Oct 6 2015

The Abstract Collection Class

« Skeletal implementation of the Collection interface.

 For unmodifiable collection, programmer still needs to implement:
— iterator (including hasNext and next methods)
— size

* For modifiable collection, need to also implement:

— remove method for iterator
— add

EECS 2011
UYQRSK ' Prof. J. Elder -29 - Last Updated: Oct 6 2015

IIIIIIIIII

October 1, 2015

End of Lecture

EECS 2011
UYQBSIg ' Prof. J. Elder -30 - Last Updated: Oct 6 2015

UUUUUUUUUU

The Java Collections Framework (Ordered Data Types)

’ Queue

’ Deque

Interface

Abstract Class

Abstract

Queue

! lterable

]

’ Collection |

Abstract
Collection

Abstract
List

List

IIIIIIIII
UUUUUUUUUU

' EECS 2011

Prof. J. Elder

Linked
List

-31-

Array Priority Abstract
|M| %l Sequential | | Array ’ Vector |
List List A
/‘ | ‘ ’ Stack |
4

Last Updated: Oct 6 2015

The List Interface

 Extends the Collections interface to model the data as an ordered
sequence of elements, indexed by a 0-based integer index
(position).

 Provides interface for creation of a Listlterator

 Also adds interfaces for:

— Creating the data structure
« add(e) — append element e to the list
« add(i, e) — insert element e at position i (and shift elements at i and above one to the right).

— Querying the data structure
« get(i) — return element currently stored at position i
+ indexOf(e) — return index of first occurrence of specified element e
+ lastindexOf(e) — return index of last occurrence of specified element e
» subList(i1, i2) — return list of elements from index i1 to i2

— Modifying the data structure
+ set(i, e) — replace element currently stored at index i with specified element e
* remove(e) — remove the first occurrence of the specified element from the list
* remove(i) — remove the element at position i

EECS 2011
YORK ' -32- Last Updated: Oct 6 2015
UniveRsITE Prof. J. Elder

IIIIIIIIII

The Java Collections Framework (Ordered Data Types)

’ Queue

’ Deque

Interface

Abstract Class

Abstract

Queue

! lterable

]

’ Collection |

Abstract
Collection

Abstract
List

List

IIIIIIIII
UUUUUUUUUU

' EECS 2011

Prof. J. Elder

Linked
List

-33-

Array Priority Abstract
|M| %l Sequential | | Array ’ Vector |
List List A
/‘ | ‘ ’ Stack |
4

Last Updated: Oct 6 2015

The Abstract List Class

« Skeletal implementation of the List interface.

 For unmodifiable list, programmer needs to implement methods:
— get
— size

* For modifiable list, need to implement

— set
« For variable-size modifiable list, need to implement
— add
— remove
UYQRSK ' SECS 201 -34 - Last Updated: Oct 6 2015

Prof. J. Elder

IIIIIIIIII

The Java Collections Framework (Ordered Data Types)

’ Queue

’ Deque

Interface

Abstract Class

Abstract

Queue

! lterable

]

’ Collection |

Abstract
Collection

Abstract
List

List

IIIIIIIII
UUUUUUUUUU

' EECS 2011

Prof. J. Elder

Linked
List

-35-

Array Priority Abstract
|M| %l Sequential | | Array ’ Vector |
List List A
/‘ | ‘ ’ Stack |
4

Last Updated: Oct 6 2015

The ArrayList Class

Random access data store implementation of the List interface
Uses an array for storage.

Supports automatic array-resizing

Adds methods

trimToSize() — Trims capacity to current size
ensureCapacity(n) — Increases capacity to at least n

clone() — Create copy of list

removeRange(i1, i2) — Remove elements at positions i1 to i2
RangeCheck(i): throws exception if i not in range
writeObject(s): writes out list to output stream s
readObject(s): reads in list from input stream s

EECS 2011

Prof. J. Elder - 36 - Last Updated: Oct 6 2015

The Java Collections Framework (Ordered Data Types)

’ Queue

’ Deque

Interface

Abstract Class

Abstract

Queue

! lterable

]

’ Collection |

Abstract
Collection

Abstract
List

List

IIIIIIIII
UUUUUUUUUU

' EECS 2011

Prof. J. Elder

Linked
List

-37-

Array Priority Abstract
|M| %l Sequential | | Array ’ Vector |
List List A
/‘ | ‘ ’ Stack |
4

Last Updated: Oct 6 2015

The Vector Class

e Similar to ArrayList.

« But all methods of Vector are synchronized.

— Uses an internal lock to prevent multiple threads from concurrently executing
methods for the same vector object .

— Other threads trying to execute methods of the object are suspended until the
current thread completes.

— Helps to prevent conflicts and inconsistencies in multi-threaded code

» Vector is a so-called legacy class: no longer necessary for new
applications, but still in widespread use In existing code.

« Synchronization can be achieved with ArrayLists and other classes
of the Collections framework using synchronization wrappers (we
will not cover this).

EECS 2011
YORKRE} _38.- Last Updated: Oct 6 2015
“““““““““ € Prof. J. Elder

IIIIIIIIII

The Java Collections Framework (Ordered Data Types)

’ Queue

’ Deque

Interface

Abstract Class

Abstract

Queue

! lterable

]

’ Collection |

Abstract
Collection

Abstract
List

List

IIIIIIIII
UUUUUUUUUU

' EECS 2011

Prof. J. Elder

Linked
List

-39-

Array Priority Abstract
|M| %l Sequential | | Array ’ Vector |
List List A
/‘ | ‘ ’ Stack |
4

Last Updated: Oct 6 2015

The Stack Class

 Represents a last-in, first-out (LIFO) stack of objects.
 Adds 5 methods:

push()
pop()
peek()

empty()
search(e): return the 1-based position of where an object is on the stack.

* Note: itis now recommended that LIFO functionality be implemented using double-
ended queues (java.util.Deque) instead of java.util.Stack.

YORKJ

UUUUUUU E
vvvvvvvvvv

EECS 2011

Prof. J. Elder -40 - Last Updated: Oct 6 2015

The Java Collections Framework (Ordered Data Types)

’ Queue

’ Deque

Interface

Abstract Class

Abstract

Queue

! lterable

]

’ Collection |

Abstract
Collection

Abstract
List

List

IIIIIIIII
UUUUUUUUUU

' EECS 2011

Prof. J. Elder

Linked
List

-4 -

Array Priority Abstract
|M| %l Sequential | | Array ’ Vector |
List List A
/‘ | ‘ ’ Stack |
4

Last Updated: Oct 6 2015

The Abstract Sequential List Class

« Skeletal implementation of the List interface.
« Assumes a sequential access data store (e.g., linked list)

 Programmer needs to implement methods
— listlterator()
— size()
 For unmodifiable list, programmer needs to implement list iterator’'s methods:
— hasNext()
— next()
— hasPrevious|)
— previous()
— nextindex()

— previousindex()

« For modifiable list, need to also implement list iterator’s

— set(e)

For variable-size modifiable list, need to implement list iterator’s
— add(e)
— remove()

EECS 2011
UYQRSK ' Prof. J. Elder -42 - Last Updated: Oct 6 2015

IIIIIIIIII

The Java Collections Framework (Ordered Data Types)

’ Queue

’ Deque

Interface

Abstract Class

Abstract

Queue

! lterable

]

’ Collection |

Abstract
Collection

Abstract
List

List

IIIIIIIII
UUUUUUUUUU

' EECS 2011

Prof. J. Elder

Linked
List

-43 -

Array Priority Abstract
|M| %l Sequential | | Array ’ Vector |
List List A
/‘ | ‘ ’ Stack |
4

Last Updated: Oct 6 2015

The Queue Interface

« Designed for holding elements prior to processing
« Typically first-in first-out (FIFO)
« Defines a head position, which is the next element to be removed.
* Provides additional insertion, extraction and inspection operations.
« Extends the Collection interface to provide interfaces for:
— offer(e): add e to queue if there is room (return false if not)
— poll(): return and remove head of queue (return null if empty)
— remove(): return and remove head of queue (throw exception if empty)
— peek(): return head of queue (return null if empty)

— element(): return head of queue (throw exception if empty)

EECS 2011
YORKREJ _44- Last Updated: Oct 6 2015
“““““““““ > Prof. J. Elder

IIIIIIIIII

The Java Collections Framework (Ordered Data Types)

’ Queue

’ Deque

Interface

Abstract Class

Abstract

Queue

! lterable

]

’ Collection |

Abstract
Collection

Abstract
List

List

IIIIIIIII
UUUUUUUUUU

' EECS 2011

Prof. J. Elder

Linked
List

- 45 -

Array Priority Abstract
|M| %l Sequential | | Array ’ Vector |
List List A
/‘ | ‘ ’ Stack |
4

Last Updated: Oct 6 2015

The Deque Interface

Supports element insertion and removal at both ends
First-in first-out (FIFO) or Last-in first-out (LIFO) functionality

Deque Methods

First Element (Head)

Last Element (Tail)

Throws exception|| Special value |Throws exception| Special value

Insert addFirst(e) of ferFirst(e) |addLast(e) offerLast(e)

Remove |removeFirst() pollFirst() removelLast () pollLast()

Examine |getFirst() peekFirst() getLast () peekLast ()
Deque Equivalent of Queue Deque Equivalent of Stack
Queue Method | Equivalent Deque Method Stack Method | Equivalent Deque Method
add(e) addLast(e) push(e) addFirst(e)
offer(e) offerLast(e) pop() removeFirst()
remove () removeFirst() peek() peekFirst()
poll() pollFirst()
element () getFirst()
peek() peekFirst()

' =ECS 2011 -46 - Last Updated: Oct 6 2015

Prof. J. Elder

The Java Collections Framework (Ordered Data Types)

’ Queue

’ Deque

Interface

Abstract Class

Abstract

Queue

! lterable

]

’ Collection |

Abstract
Collection

Abstract
List

List

IIIIIIIII
UUUUUUUUUU

' EECS 2011

Prof. J. Elder

Linked
List

-47 -

Array Priority Abstract
|M| %l Sequential | | Array ’ Vector |
List List A
/‘ | ‘ ’ Stack |
4

Last Updated: Oct 6 2015

ArrayDeque Class

» Resizable array implementation of the Deque interface.
» ArrayDeque objects are not synchronized by default.

 However, the iterator is fail-fast: if the deque is structurally modified
at any time after the iterator is created, in any way except through
the lterator's own remove or add methods, the iterator will throw a
ConcurrentModificationException.

 This is detected at the first execution of one of the iterator’'s methods
after the modification.

* In this way the iterator will hopefully fail quickly and cleanly, rather
than risking arbitrary, non-deterministic behavior at an undetermined
time in the future.

EECS 2011
YORK ' -48 - Last Updated: Oct 6 2015
““““““““““ Prof. J. Elder

IIIIIIIIII

The Java Collections Framework (Ordered Data Types)

’ Queue

’ Deque

Interface

Abstract Class

Abstract

Queue

! lterable

]

’ Collection |

Abstract
Collection

Abstract
List

List

IIIIIIIII
UUUUUUUUUU

' EECS 2011

Prof. J. Elder

Linked
List

- 49 -

Array Priority Abstract
|M| %l Sequential | | Array ’ Vector |
List List A
/‘ | ‘ ’ Stack |
4

Last Updated: Oct 6 2015

The LinkedList Class

* Implements the List, Queue and Deque interfaces.
 Uses a doubly-linked list data structure.
« Extends the List interface with additional methods:

getFirst()
getLast()
removeFirst()
removelast()
addFirst(e)
addLast(e)

« These make it easier to use the LinkedList class to create
stacks, queues and deques (double-ended queues).

YORKJ

IIIIIIIIII
IIIIIIIIII

EECS 2011

Prof. J. Elder - 50 - Last Updated: Oct 6 2015

The LinkedList Class

» LinkedList objects are not synchronized by default.

* However, the LinkedList iterator is fail-fast: if the list is structurally
modified at any time after the iterator is created, in any way except
through the Iterator's own remove or add methods, the iterator will
throw a ConcurrentModificationException.

 This is detected at the first execution of one of the iterator’'s methods
after the modification.

* In this way the iterator will hopefully fail quickly and cleanly, rather
than risking arbitrary, non-deterministic behavior at an undetermined
time in the future.

EECS 2011
YORK ' -51- Last Updated: Oct 6 2015
““““““““““ Prof. J. Elder

IIIIIIIIII

The Java Collections Framework (Ordered Data Types)

’ Queue

’ Deque

Interface

Abstract Class

Abstract

Queue

! lterable

]

’ Collection |

Abstract
Collection

Abstract
List

List

IIIIIIIII
UUUUUUUUUU

' EECS 2011

Prof. J. Elder

Linked
List

-52-

Array Priority Abstract
|M| %l Sequential | | Array ’ Vector |
List List A
/‘ | ‘ ’ Stack |
4

Last Updated: Oct 6 2015

The Abstract Queue Class

« Skeletal implementation of the Queue interface.

* Provides implementations for
— add(e)
— remove()
— element()
— clear()
— addAli(c)

EECS 2011
UYQBSIS ' Prof. J. Elder -53 - Last Updated: Oct 6 2015

UUUUUUUUUU

The Java Collections Framework (Ordered Data Types)

’ Queue

’ Deque

Interface

Abstract Class

Abstract

Queue

! lterable

]

’ Collection |

Abstract
Collection

Abstract
List

List

IIIIIIIII
UUUUUUUUUU

' EECS 2011

Prof. J. Elder

Linked
List

-54 -

Array Priority Abstract
|M| %l Sequential | | Array ’ Vector |
List List A
/‘ | ‘ ’ Stack |
4

Last Updated: Oct 6 2015

The Priority Queue Class

« Based on priority heap

« Elements are prioritized based either on
— natural order
— a comparator, passed to the constructor.

* Provides an iterator

 We will study this in detail when we get to heaps!

EECS 2011
UYQBSI,@ ' Prof. J. Elder -55 - Last Updated: Oct 6 2015

IIIIIIIIII

The Java Collections Framework (Ordered Data Types)

’ Queue

’ Deque

Interface

Abstract Class

Abstract

Queue

! lterable

]

’ Collection |

Abstract
Collection

Abstract
List

List

IIIIIIIII
UUUUUUUUUU

' EECS 2011

Prof. J. Elder

Linked
List

-56 -

Array Priority Abstract
|M| %l Sequential | | Array ’ Vector |
List List A
/‘ | ‘ ’ Stack |
4

Last Updated: Oct 6 2015

Learning Outcomes

* From this lecture you should understand:
— The purpose and advantages of the Java Collections Framework

— How interfaces, abstract classes and classes are used
hierarchically to achieve some of the key goals of object-oriented
software engineering.

— The purpose of iterators, and how to create and use them.

— How the Java Collections Framework can be used to develop
code using general collections, lists, array lists, stacks and
queues.

EECS 2011
YORK ' -57 - Last Updated: Oct 6 2015
““““““““““ Prof. J. Elder

IIIIIIIIII

For More Detalls

- Javadoc, provided with your java distribution.

« Comments and code in the specific java.util.*.java files,
provided with your java distribution.

 The Collections Java tutorial, available at http://
docs.oracle.com/javase/tutorial/collections/index.html

e Chan et al, The Java Class Libraries, Second Edition

EECS 2011
YORKRE} _58.- Last Updated: Oct 6 2015
“““““““““ Prof. J. Elder

IIIIIIIIII

The Java Collections Framework (Ordered Data Types)

’ Queue

’ Deque

Interface

Abstract Class

Abstract

Queue

! lterable

]

’ Collection |

Abstract
Collection

Abstract
List

List

IIIIIIIII
UUUUUUUUUU

' EECS 2011

Prof. J. Elder

Linked
List

-59 -

Array Priority Abstract
|M| %l Sequential | | Array ’ Vector |
List List A
/‘ | ‘ ’ Stack |
4

Last Updated: Oct 6 2015

